Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Preterm newborns undergo various stresses that may materialize as learning problems at school-age. Sleep staging of the Electroencephalogram (EEG), followed by prediction of their brain-age from these sleep states can quantify deviations from normal brain development early (when compared to the known age). Current automation of this approach relies on explicit sleep state classification, optimizing algorithms using clinician visually labelled sleep stages, which remains a subjective gold-standard. Such models fail to perform consistently over a wide age range and impacts the subsequent brain-age estimates that could prevent identification of subtler developmental deviations. We introduce a Bayesian Network utilizing multiple Gaussian Mixture Models, as a novel, unified approach for directly estimating brain-age, simultaneously modelling for both age and sleep dependencies on the EEG, to improve the accuracy of prediction over a wider age range.


Conference paper

Publication Date



stat.ML, stat.ML, cs.LG, q-bio.QM